This ‘Demonically Clever’ Backdoor Hides In a Tiny Slice of a computer chip

Wired:

The “demonically clever” feature of the Michigan researchers’ backdoor isn’t just its size, or that it’s hidden in hardware rather than software. It’s that it violates the security industry’s most basic assumptions about a chip’s digital functions and how they might be sabotaged. Instead of a mere change to the “digital” properties of a chip—a tweak to the chip’s logical computing functions—the researchers describe their backdoor as an “analog” one: a physical hack that takes advantage of how the actual electricity flowing through the chip’s transistors can be hijacked to trigger an unexpected outcome. Hence the backdoor’s name: A2, which stands for both Ann Arbor, the city where the University of Michigan is based, and “Analog Attack.”

Here’s how that analog hack works: After the chip is fully designed and ready to be fabricated, a saboteur adds a single component to its “mask,” the blueprint that governs its layout. That single component or “cell”—of which there are hundreds of millions or even billions on a modern chip—is made out of the same basic building blocks as the rest of the processor: wires and transistors that act as the on-or-off switches that govern the chip’s logical functions. But this cell is secretly designed to act as a capacitor, a component that temporarily stores electric charge.

Every time a malicious program—say, a script on a website you visit—runs a certain, obscure command, that capacitor cell “steals” a tiny amount of electric charge and stores it in the cell’s wires without otherwise affecting the chip’s functions. With every repetition of that command, the capacitor gains a little more charge. Only after the “trigger” command is sent many thousands of times does that charge hit a threshold where the cell switches on a logical function in the processor to give a malicious program the full operating system access it wasn’t intended to have. “It takes an attacker doing these strange, infrequent events in high frequency for a duration of time,” says Austin. “And then finally the system shifts into a privileged state that lets the attacker do whatever they want.”

That capacitor-based trigger design means it’s nearly impossible for anyone testing the chip’s security to stumble on the long, obscure series of commands to “open” the backdoor. And over time, the capacitor also leaks out its charge again, closing the backdoor so that it’s even harder for any auditor to find the vulnerability.

Seriously sneaky.